The biology of mitochondrial uncoupling proteins.
نویسندگان
چکیده
Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner membrane of mitochondria. They are found in all mammals and in plants. They belong to the family of anion mitochondrial carriers including adenine nucleotide transporters. The term "uncoupling protein" was originally used for UCP1, which is uniquely present in mitochondria of brown adipocytes, the thermogenic cells that maintain body temperature in small rodents. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP synthase. Activation of UCP1 enhances respiration, and the uncoupling process results in a futile cycle and dissipation of oxidation energy as heat. UCP2 is ubiquitous and highly expressed in the lymphoid system, macrophages, and pancreatic islets. UCP3 is mainly expressed in skeletal muscles. In comparison to the established uncoupling and thermogenic activities of UCP1, UCP2 and UCP3 appear to be involved in the limitation of free radical levels in cells rather than in physiological uncoupling and thermogenesis. Moreover, UCP2 is a regulator of insulin secretion and UCP3 is involved in fatty acid metabolism.
منابع مشابه
Decreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart
Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...
متن کاملOxidative stress, thermogenesis and evolution of uncoupling proteins
The uncoupling protein UCP1 provides eutherian mammals with an efficient thermogenic mechanism. Recent work published in BMC Evolutionary Biology, following the identification of UCP1 orthologs in non-eutherians, concludes that this unique function appeared after sequence divergence and purifying selection that allowed functional co-option.
متن کاملThe Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken
The avianuncoupling protein (avUCP) is a member of the mitochondrial transporter superfamily that uncouples proton entry in the mitochondrial matrix from ATP synthesis. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to estimate the allele and genotype frequencies of the UCP/HhaI polymorphisms and to determine associations between these polymorp...
متن کاملA function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet.
It is hypothesized that mitochondrial uncoupling proteins operate as carriers of fatty acid peroxide anions. This is assumed to result in electrophoretic extrusion of such anions from the inner to the outer leaflet of the inner mitochondrial membrane, being driven by membrane potential (mitochondrial interior negative). In this way, the inner leaflet is ridded of fatty acid peroxides that other...
متن کاملDecreased fatty acid synthesis due to mitochondrial uncoupling in adipose tissue.
Synthesis of fatty acid (FA) in adipose tissue requires cooperation of mitochondrial and cytoplasmic enzymes. Mitochondria are required for the production of ATP and they also support the formation of acetyl-CoA and NADPH in cytoplasm. Since cellular levels of all these metabolites depend on the efficiency of mitochondrial energy conversion, mitochondrial proton leak via uncoupling proteins (UC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 53 Suppl 1 شماره
صفحات -
تاریخ انتشار 2004